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Interleaved Design for E-learning: Theory, Design, and Empirical Findings 

Abstract 

The rapid development of e-learning has drawn increasing attention to the issue of how 

learners’ learning activities can be better structured using technologies. This study focuses on 

how to improve e-learning performance by optimizing the structuring of learning sessions 

from the perspective of interleaving (i.e., mixing different topics in a learning session). 

Following the design science paradigm, this study chooses cognitive load theory as the kernel 

theory and proposes a new interleaving design — related-interleaving — that populates an 

interleaved session with related topics as a way of reducing cognitive load during an 

interleaved session. Drawing on the theoretical predictions, we design and instantiate a 

personalized learning system with the related-interleaving strategy by fusing educational 

strategies and machine learning techniques. The results from a two-month field experiment 

confirm that related-interleaving outperforms non-interleaving and unrelated-interleaving. 

Our findings also reveal that compared with unrelated-interleaving, related-interleaving 

benefits weak learners more and thus helps reduce learning performance disparities. This 

study demonstrates how personalized e-learning systems can be further improved from the 

perspective of interleaving.  
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INTRODUCTION 

The e-learning industry has grown rapidly in recent years with over 60% of 

postsecondary degree seekers in the U.S. engaged in some form of e-learning.1 Compared 

with traditional classroom-based learning, e-learning allows learners to access course 

materials at any time and from any location with an internet connection. Moreover, e-learning 

platforms can better personalize learning activities to suit each learner’s progress and style 

(Chen et al. 2018; Park and Lee 2003). Despite these advantages, e-learning still faces 

criticism for its limited learning effectiveness (Bettinger et al. 2017; Figlio et al. 2013; 

Goudeau et al. 2021). Compared to learners in traditional classrooms, e-learners adopt a more 

passive mode of learning: they mostly consume and record information rather than actively 

reflecting upon it based on existing knowledge (Furenes et al. 2021; Shrivastav and Hiltz 

2013). This can lead to a limited depth of understanding and a low ability to transfer the 

knowledge learned from one context to another (Delgado and Salmerón 2021). 

One strategy to promote active thinking and learning effectiveness, as advocated by 

educational researchers, is to mix practices of different topics in the same learning session — 

called interleaving (Firth et al. 2021). In interleaved learning, learners are exposed to 

different topics in one session and learning of the same topic is spread across multiple 

sessions (Rohrer et al. 2020). For example, when learning Python data structures, such as 

matrix, tuple, and dictionary, an interleaved design would involve a series of sessions, each 

mixing exercises for different data structures instead of each focusing on one data structure. 

Advocates of interleaved learning suggest that it encourages learners to actively identify 

different topics and corresponding strategies based on their existing knowledge because they 

cannot simply rely on repetitive practices to solve the same type of problem over and over 

 
1 https://www.census.gov/library/stories/2020/08/schooling-during-the-covid-19-pandemic.html 



3 

 

again (Jaeger et al. 2016). This process can improve learners’ ability to identify boundaries 

and connections among different topics, leading to a deeper understanding of the subject 

(Mielicki and Wiley 2022; Rohrer 2012; Rohrer et al. 2014). To our knowledge, however, e-

learning platforms have not embraced interleaving. The prevailing design is still non-

interleaving; that is, offering multiple practices for one topic in a session before moving on to 

the next topic (Hussain et al. 2019; Loghin et al. 2008). Given the potential benefits of 

interleaving, research is needed on how to leverage it in e-learning settings to improve e-

learning effectiveness. 

Existing interleaving designs, which are designed for traditional face-to-face instructions, 

may not work well for e-learning settings for a few reasons. First, past findings show that the 

effects of interleaving are not always positive (Firth et al. 2021; Rohrer et al. 2020), in part 

because students find interleaving more difficult than non-interleaving (Rohrer et al. 2015; 

Tauber et al. 2013; Yan et al. 2016). This could pose a special challenge for e-learning 

because learners on e-learning platforms may be more susceptible to distractions and 

cognitive overload (Delgado and Salmerón 2021). In particular, online learners are often 

learning in environments that are not specifically designed for focused learning (Conrad et al. 

2022) and online platforms themselves can also be distracting, with various information 

competing for attention (Dontre 2021; Shrivastav and Hiltz 2013; Wang 2022). Hence, when 

designing interleaving for e-learning, it is important to consider how interleaving will affect 

the cognitive load on learners. To do so, one needs a better theoretical understanding of the 

relationship between interleaving and learners’ cognitive resources and to design interleaving 

accordingly to alleviate the concern of further overloading e-learners. 

Moreover, existing interleaving designs require teachers to pick topics for each 

interleaved session and the same design is offered to all learners. Such traditional designs do 

not take advantage of the rich data on learners’ past activities and performance, while on e-
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learning platforms, the easily accessible data can be leveraged to offer personalized and 

adaptive learning sessions for each individual learner. Therefore, for interleaving to be most 

effective, the traditional interleaving design must be modernized to suit the highly dynamic e-

learning settings. 

To address the aforementioned gaps, this research offers a theory-driven interleaving 

design for e-learning settings that is personalized, adaptive, and cognizant of each learner’s 

cognitive load. To achieve this goal, we first draw on the cognitive load theory (CLT) to 

develop an understanding of the relationship between interleaved learning and learners’ 

cognitive load. CLT is a fundamental theory of learning that focuses on the cognitive 

demands of learning (Sweller 2011). Based on CLT, we propose that while interleaved 

learning prompts learners to make connections between different topics and expand learning 

opportunities, it also increases learners’ cognitive load compared to non-interleaving, which 

may reduce learning effectiveness. Accordingly, we propose a new interleaving design — 

related-interleaving — that requires an interleaved learning session to consist of related 

topics so that it reduces the cognitive resources required for basic processing while still 

offering opportunities for making connections between different topics. Based on this 

theoretical perspective, we also anticipate that weaker learners, who have less working 

memory for encoding new knowledge, are more likely to benefit from this related-

interleaving design.  

We then follow the design science guidelines to implement an interleaving design for e-

learning that is data-driven, personalized, and adaptive. Our design framework includes the 

following components: (a) dynamic detection of learners’ weak topics based on their past 

performance using a hidden Markov model (Reddy et al. 2016; Wilson et al. 2016), (b) a 

knowledge map for capturing relatedness between different topics, which is dynamically 

updated using fuzzy association rules (Tseng et al. 2007), and (c) a scheduling engine that 
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assembles practice materials in an adaptive, personalized manner. The scheduling engine 

ensures that the topics covered in each session are suitable for the learner’s progress (based 

on the detected weak topics) and are related (based on the knowledge map).  

To evaluate our design, we compare our related-interleaving design with non-

interleaving (where each learning session focuses on a single topic) and unrelated-

interleaving (where interleaved topics are chosen without considering topic relatedness) in a 

randomized field experiment involving 510 middle school students using an e-learning 

platform designed by this research team. Our results show that, in the context of e-learning, 

related-interleaving leads to better learning performance than non-interleaving and unrelated-

interleaving. Furthermore, the benefit of related-interleaving over unrelated-interleaving is 

more prominent for weak learners than for strong learners. This suggests that our related-

interleaving design for e-learning not only improves e-learning performance overall, but also 

reduces the performance disparities between weak and strong learners. 

LITERATURE REVIEW 

Research on E-learning Design 

The low effectiveness of e-learning has been a major concern for educators and 

researchers (Bettinger et al. 2017; Figlio et al. 2013; Goudeau et al. 2021). To ensure the 

overall effectiveness of e-learning initiatives, there is an urgent need to develop targeted 

strategies and interventions that cater to the unique needs of online learners (Hansen and 

Reich 2015; Kizilcec et al. 2017; Reich and Ruipérez-Valiente 2019). In response to this 

challenge, Information Systems scholars have approached technology-based e-learning 

designs from multiple perspectives (Alavi and Leidner 2001; Gupta and Bostrom 2013; 

Gupta and Bostrom 2009; Piccoli et al. 2001). One stream of research focuses on technology-

enabled behavioral nudges to engage online learners (Damgaard and Nielsen 2018) and 

facilitate self-regulation of the learning pace (Santhanam et al. 2008). Examples of these 
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nudges include on-the-hour cues (Huang et al. 2023), call-to-actions (Huang et al. 2021), and 

gamified interventions (Leung et al. 2023). A second stream studies the effects of 

communication or collaboration support tools that facilitate online learners’ interaction with 

each other (Kulkarni et al. 2015) and with instructors (Dennen et al. 2007). 

Our study belongs to the third stream, which focuses on the structuring of e-learning 

activities. For example, researchers have examined how to choose appropriate learning 

session lengths (Manasrah et al. 2021) and incorporate active learning activities during online 

lectures (Khan et al. 2017; Sandrone et al. 2021). A more recent focus is to personalize online 

learners’ experience, including detecting weak topics (i.e., identifying gaps in learners’ 

knowledge) for the purpose of recommending appropriate topics to learn next (e.g., Bauman 

and Tuzhilin 2018; Wilson and Nichols 2015), and adapting the challenge level of learning 

materials (Kim et al. 2020). Several researchers further explore how to optimize the sequence 

of learning sessions, with each session dealing with a different weak topic. For example, 

some studies suggest arranging topics from low to high difficulty levels across sessions 

(Hussain et al. 2019; Jiang et al. 2022). Others optimize the sequence of learning sessions 

based on topic similarity and learner preferences (Al-Muhaideb and Menai 2011; Chen 2008; 

Jeng and Huang 2019; Kurilovas et al. 2015). This research differs from prior studies in that, 

instead of studying the sequence of topics or learning sessions, we are concerned with how to 

interleave different topics in one session. 

Interleaved Session Design 

Interleaved learning, as proposed in the education field, exposes learners to a few 

different topics in a single learning session (e.g., ABC, BCD) (Taylor and Rohrer 2010). This 

contrasts with a conventional non-interleaved (or “blocking”) design, which exposes learners 

to a single topic repeatedly in a learning session (e.g., AAA, BBB). Educational researchers 

propose that interleaving different topics in one session can encourage learners to probe the 

connections and differences among topics and associate problems with the corresponding 
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strategies, thus leading to better learning outcomes (Birnbaum et al. 2013; Rohrer et al. 2014; 

Taylor and Rohrer 2010). 

Thus far, most research on interleaved learning has focused on examining whether 

interleaving can outperform non-interleaving. Some studies demonstrate that interleaving is 

more beneficial in various subject domains, such as math, category induction, sports, and 

medical training (Foster et al. 2019; Kornell and Bjork 2008; Rohrer et al. 2015). Other 

studies, however, suggest that interleaved learning may not always outperform non-

interleaved learning (Carvalho and Goldstone 2014; Hausman and Kornell 2014). For 

example, an interleaved design is not as effective as a non-interleaved design when 

interleaved concepts are highly distinguishable (Carvalho and Goldstone 2014; Zulkiply and 

Burt 2013). A few recent studies further suggest that learners may struggle to process 

interleaved information when their memory capacities are limited, which may significantly 

dilute the benefits of interleaving (Firth et al. 2021; Sana et al. 2018). 

The issue of how to design interleaving has received scant attention in this literature. 

One exception is Yan and Sana (2021), which explores interleaving at different levels; that is, 

whether to interleave within a domain (e.g., mixing different topics of statistics) or across 

domains (e.g., mixing topics of statistics and physics). Their research, however, does not 

address the question of how to choose topics from the same domain. 

DESIGNING RELATED-INTERLEAVING FOR E-LEARNING 

This study focuses on the design of interleaving. We follow the design science research 

approach (Abbasi and Chen 2008; Walls et al. 1992) to develop a system for intelligent, data-

driven interleaved learning for e-learning platforms (see Table 1). In doing so, we select CLT 

(Sweller 2011) as the kernel theory to motivate our related-interleaving design. CLT is a 

fundamental theory about the relationship between the cognitive demands of learning and 
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learning performance. Given the recent suggestions that a learner’s memory capacity can be a 

barrier to realizing the benefits of interleaving (Firth et al. 2021; Sana et al. 2018), we posit 

that CLT is the appropriate framework for analyzing both the benefits and costs of 

interleaving. This cost perspective is especially relevant when guiding the design of 

interleaving sessions for e-learning as e-learners typically have limited cognitive resources 

available (e.g., Delgado and Salmerón 2021). Guided by CLT, we propose a new related-

interleaving design to lessen the cognitive load on learners while still offering opportunities 

to make connections between different topics. We then identify meta-requirements for the 

related-interleaving design for e-learning systems and propose meta-designs that satisfy these 

requirements. We also instantiate an e-learning system that integrates the meta-designs. We 

present our design framework in Table 1 and discuss the details in the following sections. 

A Brief Overview of Cognitive Load Theory 

CLT is one of the most widely used theories in learning and instruction (Kalyuga 2007; 

Sweller 2010). CLT is built on an understanding of the role of memory in learning activities. 

It recognizes that human beings use working memory for receiving and processing new 

information and long-term memory for storing and organizing processed information in the 

form of schemas (Sweller 2011). Such cognitive schemas can be quickly retrieved and used 

in a flexible way to resolve problems; hence, building such schemas is an essential goal of 

learning. When a learner approaches new information, basic processing occurs first. This 

includes receiving information and retrieving existing schemas to understand the information. 

Then, schema building may occur (Sweller et al. 2019). The latter includes, for example, 

categorizing information, abstracting away unnecessary details, identifying relationships with 

other information, and integrating with existing schemas.  
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Table 1: Theory-driven Design Framework for an Interleaved E-learning System 

Research goal Improve the e-learning session design from the interleaving perspective 

Kernel theory 

Cognitive load theory (CLT) theorizes that the ultimate design goal to achieve 

effective learning is to manage learners’ basic processing load and maximize their 

schema building. Based on CLT, increasing the relatedness of interleaved topics (i.e., 

as in related-interleaving) can reduce basic processing load and provide more 

opportunities for schema building, thus leading to better learning performance. 

Meta-

requirements 

1. Dynamically detect the learner’s weak topics. 

2. Increase the relatedness of weak topics within the same learning session. 

3. Schedule available learning materials according to the criteria of weak topics and 

topic relatedness. 

Meta-design 

• 1. Use the hidden Markov model to dynamically identify the mastery level of each 

topic for a focal learner. 

• 2. Include expert knowledge and fuzzy association rules to build a knowledge map to 

detect topic relatedness. 

• 3. Design a scheduling engine that implements the scheduling goals. 

Testable 

hypotheses 

• H1: Compared with unrelated-interleaving, related-interleaving leads to better 

learning performance. 

• H2: Compared with non-interleaved learning, related-interleaving leads to better 

learning performance. 

System 

instantiation 
Instantiate the meta-design artifacts and implement the designed system. 

Experimental 

evaluation 

Empirically evaluate the testable hypotheses via a randomized field experiment and 

post-hoc analyses on the heterogenous effect of related-interleaving. 

 

Crucially, both basic processing and schema building require working memory, which is 

very limited in capacity and duration (Zhu and Watts 2010). When basic processing 

consumes too much working memory, schema building is reduced, leading to suboptimal 

learning. In particular, the amount of working memory used (or the cognitive load) for basic 

processing is a function of the complexity of the materials, the presentation format, and 

whether the learner can retrieve and apply relevant schemas from long-term memory. 

Applying existing schemas can drastically lessen the cognitive load needed for basic 

information processing (Kleider et al. 2008). Overall, a fundamental principle of CLT for 
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effective learning session design is to manage the cognitive load for basic processing, 

allowing sufficient resources for schema building.  

Applying CLT to instructional design, scholars have focused on methods to reduce the 

basic processing load, such as presenting information in an easy-to-understand format (e.g., 

by incorporating multimedia and diagrams) (Brunken et al. 2003; Mayer and Moreno 2003), 

providing worked examples or partial solutions for practices (Renkl 2014; Sweller et al. 

2019) and incorporating multi-modal information (e.g., visual and auditory information) 

(Ginns 2005). A few other studies have explored approaches to deliberately increase the basic 

processing load within learners’ working memory capacity to provide more opportunities for 

schema building. For instance, it is suggested that providing practices with higher variability 

for the same topic leads to better learning outcomes when the total cognitive load remains 

within limits (Likourezos et al. 2019). 

The above studies primarily focus on designing practices or learning materials for a 

specific learning topic, whereas this study focuses on how to interleave different topics in a 

learning session. Therefore, this research addresses a gap in the literature of CLT-based 

instructional design and adds new perspectives on how interleaving designs may affect 

cognitive load and learning performance.  

CLT and Interleaving 

In non-interleaved learning, learners encounter materials of the same topic repeatedly in 

a learning session. Observing the commonality between materials of the same topic can 

facilitate building schemas of this topic, which, in turn, can be used to quickly process other 

materials of the same topic. Non-interleaved learning thus drastically reduces learners’ 

cognitive load for basic processing. However, because learners can apply the same schemas 

in the entire session, opportunities for refining or building new schemas are also limited. 
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In interleaved learning, learners have opportunities to process materials for different 

topics in the same session, which may lead to the construction of higher-level schemas that 

can help learners “connect the dots” among different topics (Rohrer et al. 2014). Furthermore, 

learners may also contrast between different topics and are hence exposed to the limitation of 

schemas built for specific topics, which may lead to more refined and robust schemas 

(Birnbaum et al. 2013; Rohrer 2012; Rohrer et al. 2015). Thus, interleaved learning can 

expand “schema-building opportunities.” However, interleaved learning may also increase 

learners’ cognitive load and elevate the “overload risk.” Given that learners cannot easily 

leverage schemas developed for one topic to the next topic, the cognitive load for basic 

processing in interleaved learning can be substantially higher than that in non-interleaved 

learning. As learners devote more cognitive resources to basic processing, they may not have 

enough cognitive capacity for schema building (Sana et al. 2018). This is highly relevant in e-

learning where learners tend to operate with reduced cognitive resources, but this downside 

has not been adequately recognized in the literature. 

To mitigate the overload risk of interleaved learning and promote its schema-building 

benefits, we propose an interleaving design called related-interleaving, which involves 

purposefully choosing highly related topics for inclusion in an interleaved learning session. 2 

When the topic relatedness is relatively high, schemas built for one topic can be partially 

reused for a related topic, lessening the cognitive load for basic processing and thus 

 
2 Topic relatedness in this study differs from concepts raised in prior interleaving studies such as topic similarity 

(Foster et al. 2019). Specifically, topic similarity refers to whether the topics belong to the same category, while 

topic relatedness in this study emphasizes the dependency relationship: whether understanding topic A can 

enhance the learning of a subsequent topic B. To illustrate this distinction, let us consider the examples from 

Foster et al. (2019). In their study, computing volumes of spheroids and wedges are similar topics. However, in 

our study, these topics are not related because knowing how to compute volumes of spheroids does not depend 

on the knowledge of computing volumes of wedges, and vice versa; instead, computing volumes of spheroids 

(i.e., the area of the circle times 2/3 of the height) should be related to computing the area of circles, because 

computing volumes of spheroids depends on correctly calculating the area of circles. 
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mitigating the “overload risk” (O'donnell et al. 2002; Sweller 2010). For example, the 

schemas built for Python array can facilitate the understanding of matrix. Hence, these two 

topics can be included in the same interleaved session. Related-interleaving stands in contrast 

to traditional interleaving designs that do not consider topic relatedness and thus have low or 

no topic relatedness (“unrelated-interleaving” hereafter).  

Furthermore, high topic-relatedness can also provide more “schema-building 

opportunities.” When topics in a learning session are highly related, more “dots” can be 

connected, which can facilitate the construction of high-level schemas. Furthermore, when 

topics are highly related, there is also a greater need to compare and contrast them, which can 

help learners fix misconceptions about a particular topic and develop a more robust and 

nuanced understanding of different topics (Birnbaum et al. 2013; Carvalho and Goldstone 

2014). For instance, when Python learners resolve a question on array next to one on matrix, 

they are likely prompted to deliberate on the connections and distinctions between the two 

topics and may thus form a deeper understanding of both topics.  

Meta-Requirements for Related-interleaving 

Guided by the kernel theory, we now discuss the meta-requirements for our proposed 

design artifact. As stated in the introduction, our design goals include improving e-learning 

session design using related-interleaving and making learning session design more 

personalized and adaptive by leveraging the rich data generated in e-learning. To fulfill these 

goals, we propose a related-interleaving design with the following key components: weak 

topic detection, topic-relatedness modeling, and a scheduling engine. The weak-topic-

detection component draws upon a learner’s past learning record to produce a personalized 

list of weak topics at a specific moment. The topic-relatedness-modeling component builds 

and updates a knowledge map that models relatedness among topics. The scheduling engine 

chooses from available learning materials that address a learner’s weak topics while meeting 
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the criteria of related-interleaving. Next, we discuss the three components separately in 

further detail and how they work together as a system. 

Meta-Design I: Weak Topic Detection Using Hidden Markov Model 

According to CLT, learning occurs when novel information prompts learners to build 

new schemas or to enhance existing ones (Sweller 2011). By detecting each learner’s weak 

topics and letting her focus on unmastered topics, the session design uses the learner’s time 

efficiently. For this purpose, our e-learning system maintains a list of weak topics for each 

learner at any time. Weak topics are topics not yet mastered by a learner, as indicated by the 

learner’s poor performance on the topic (Bauman and Tuzhilin 2018). Previous work has 

explored several approaches to detect learners’ weak topics. One approach involves 

comparing a learner’s overall performance in practicing a specific topic with a predefined 

threshold to identify weak topics (Bauman and Tuzhilin 2018). Another approach uses user-

based collaborative filtering to suggest unmastered topics to learners with similar learning 

conditions (Klašnja-Milićević et al. 2011). More recently, Bayesian knowledge tracing 

models have been introduced to consider learners’ performance at the individual practice 

level and to model the hidden transition of a learner’s states in terms of topic mastery 

(Pelánek 2017). This approach acknowledges that a learner can gain mastery of a topic over 

time through practice but may also lose mastery as time passes. It has become the prevailing 

approach on personalized learning platforms (Abdelrahman et al. 2023).  

Our model builds on previous work on Bayesian knowledge tracing that captures 

temporal changes in students’ topic mastery (Pardos et al. 2013; Reddy et al. 2016). The 

evolution of topic mastery can be represented by the transition process in a hidden Markov 

model (HMM) and the observed performance on a topic can be captured by the emission 

process of the HMM (Chen et al. 2018). To model the evolution of a learner’s topic mastery, 

we build an HMM, as shown in Figure 1, to consist of (1) a hidden transition process for 

capturing the evolution of topic mastery and (2) an observed emission process for capturing 
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the observed learning performance. Formally, we model a learner s’s mastery of the topic c at 

time t (defined as the time of the t-th practice of the topic) as a latent state (𝑦𝑠𝑡
𝑐 ) with N 

ordered levels.3 The emission (𝑥𝑠𝑡
𝑐 ) is defined as answer correctness, which takes a value of 

“1” if the learner s answers the question on the topic c correctly at time t and “0” otherwise.  

 

Figure 1. Hidden Markov Model for Learning Processes 

 

Hidden transition process: HMM assumes that the evolution of hidden states over time 

follows a Markov chain, in which the next state (𝑦𝑠𝑡+1
𝑐 ) depends only on the current state 

(𝑦𝑠𝑡
𝑐 ) and the transition covariates (𝑾𝒔𝒕

𝒄 ). We include a vector of covariates (𝑾𝒔𝒕
𝒄 ) affecting 

state transitions, including both time-invariant learner characteristics (e.g., gender and age) 

and time-variant learning history (e.g., the number of correct answers on topic c) (Kim and 

Krishnan 2019). We provide more details about the covariates in Appendix A.  

Let 𝑝𝑠𝑡
𝑐 (𝑖, 𝑗) represent the probability of learner s’s mastery of topic c transiting from 

state i at time t to state j at time t+1. 𝑷𝑠𝑡
𝑐 = [𝑝𝑠𝑡

𝑐 (𝑖, 𝑗)] is an 𝑁 × 𝑁 transition matrix for 

learner s on topic c. Following Singh et al. (2011), we assume that the topic mastery state can 

only transit from one state to its adjacent states and that the transition follows a random walk. 

Consequently, the transition matrix 𝑷𝑠𝑡
𝑐  is illustrated below:  

 
3 We have explored N = 2, 3, and 4, and the optimal number of hidden states is N = 2 according to the Bayesian 

information criterion.  
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𝑷𝑠𝑡
𝑐 = 

[
 
 
 
 
 
𝑝𝑠𝑡

𝑐 (1,1) 𝑝𝑠𝑡
𝑐 (1,2) ⋯ 0 0

𝑝𝑠𝑡
𝑐 (2,1) ⋱ 0

⋮ 𝑝𝑠𝑡
𝑐 (i, j) ⋮

0 ⋱ 𝑝𝑠𝑡
𝑐 (𝑁 − 1,𝑁)

0 0 ⋯ 𝑝𝑠𝑡
𝑐 (N,N − 1) 𝑝𝑠𝑡

𝑐 (𝑁,𝑁) ]
 
 
 
 
 

 

Following Singh et al. (2011), we assume that the hidden probability follows an ordered logit 

model. Specifically, we let the probability of a learner’s mastery of topic c transiting to a 

lower-ordered state, a higher-ordered state, or the same state, respectively, as follows:  

𝑝𝑠𝑡
𝑐 (i, i − 1) =

exp (𝑢𝑖
𝑙𝑐 − 𝜷𝒊

𝑐′𝑾𝒔𝒕
𝒄 − 𝛿𝑠𝑡

𝑐 )

1 + exp (𝑢𝑖
𝑙𝑐 − 𝜷𝒊

𝑐′𝑾𝒔𝒕
𝒄 − 𝛿𝑠𝑡

𝑐 )
  

𝑝𝑠𝑡
𝑐 (i, i + 1) = 1 − 

exp (𝑢𝑖
ℎ𝑐 − 𝜷𝒊

𝑐′𝑾𝒔𝒕
𝒄 − 𝛿𝑠𝑡

𝑐 )

1 + exp (𝑢𝑖
ℎ𝑐 − 𝜷𝒊

𝑐′𝑾𝒔𝒕
𝒄 − 𝛿𝑠𝑡

𝑐 )
 

𝑝𝑠𝑡
𝑐 (i, i) = 1 − p(i, i − 1)𝑠𝑡  − p(i, i + 1)𝑠𝑡  

where 𝑢𝑖
𝑙𝑐 and 𝑢𝑖

ℎ𝑐 (𝑢𝑖
𝑙𝑐 < 𝑢𝑖

ℎ𝑐) are two threshold values that are used to divide the transition 

probabilities. 𝜷𝒊
𝑐 is the vector of topic-specific and state-dependent parameters for 𝑾𝒔𝒕

𝒄 . 𝛿𝑠𝑡
𝑐  

is the random noise.  

State-Dependent Emission Process: The probability of a learner s answering a question 

on topic c correctly (𝑥𝑠𝑡
𝑐 ) at time 𝑡 is a function of the topic mastery state 𝑦𝑠𝑡

𝑐  and some 

covariates (𝒁𝒔𝒕
𝒄 ). The covariates include time-invariant learner characteristics, time-variant 

learning history (e.g., the number of correct answers on the focal topic c), and time-variant 

learner behavioral tendencies (e.g., the average time spent on each answer of the focal topic c 

and its standard deviation) (Ayabakan et al. 2016).  

Learners with different topic mastery levels (𝑦𝑠𝑡
𝑐 ) will have different distributions of 

correctly answering the topic-related questions (𝑥𝑠𝑡
𝑐 ). We thus model 𝑥𝑠𝑡

𝑐  as a Gaussian 

mixture distribution, which is generated by the different discrete hidden states (𝑦𝑠𝑡
𝑐 ). Answer 

correctness 𝑥𝑠𝑡
𝑐  depends on the probabilities of the learner being in different mastery states 
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of topic c. Following Ayabakan et al. (2016), we choose the logit model to represent the 

emission probability as follows:  

𝑝(𝑥𝑠𝑡
𝑐 = 1|𝑦𝑠𝑡

𝑐 =𝑖) =
1

1 + 𝑒−(𝛾𝑐+𝛼𝑖+𝛉𝐢
′ 𝒁𝒔𝒕

𝒄 + εst)
 

where 𝛾𝑐 represents the topic-level heterogeneity (e.g., different difficulty levels) and 𝛼𝑖 

captures the heterogeneity associated with the mastery state i. 𝜽𝒊 is the vector of state-

dependent parameters for 𝒁𝒔𝒕
𝒄  and εst is the random noise.  

We then estimate the HMM by maximizing the likelihood of the observed emission 

sequences. More details about the estimation of the HMM are presented in Appendix A. The 

outcomes of this process yield a personalized list of weak topics that are specifically tailored 

to the focal learner’s dynamic learning progress. 

Meta-Design II: Topic Relatedness Learning Using a Knowledge Map 

With weak topics detected, the next question is what topics can be mixed in a learning 

session. As discussed earlier, CLT suggests that related-interleaving can reduce learners’ 

cognitive workload for basic information processing while still providing knowledge 

integration opportunities. Hence, our second meta-requirement is to model topic relatedness. 

Topic relations are typically represented in the form of the knowledge map, which is a graph 

model where nodes (points/vertices) represent topics and edges (arcs/links) portray the 

dependency relationships between topics (Atapattu et al. 2017; Balaid et al. 2016; Lee and 

Segev 2012). An intuitive and common understanding of topic dependency in learning 

contexts is that topic B depends on topic A if mastering topic A can facilitate learners to 

master topic B (Tseng et al. 2007). This understanding is also consistent with the principles 

of CLT, that is, learners can leverage the schema built from learning topic A to understand 

topic B more efficiently. 

Existing e-learning platforms employ various methods to construct knowledge maps. 

Some platforms depend on domain experts to manually create knowledge maps, which can 
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often ensure a high level of reliability but requires substantial labor (Wilson and Nichols 

2015). Other platforms employ text mining techniques, such as TF-IDF and NLP, to extract 

knowledge maps from learning materials such as syllabi and reading materials (Bauman and 

Tuzhilin 2018). In addition, a data-driven approach involves learning knowledge maps based 

on learners’ learning records, enabling the capture of subtle changes in topic relationships 

over time (Balaid et al. 2016; Tseng et al. 2007).  

We choose an approach of combining expert knowledge and data insights by initializing 

the knowledge map using expert knowledge and then refining it dynamically based on 

learners’ learning records. This hybrid approach is based on the following considerations. On 

one hand, many teachers have some expert knowledge about topic dependency, which is a 

valuable source of information, especially when topic dependency data are sparse. On the 

other hand, building an exhaustive knowledge map is a time-consuming process and is prone 

to incompleteness. Therefore, the creation of a knowledge map needs to be automated using 

topic dependencies observed in the data. Specifically, we develop a set of expert rules (𝑀0) 

by encoding the knowledge of several senior teachers at the school where we conducted our 

experiment. Then, we use a data-driven method to dynamically fine-tune the knowledge map. 

Specifically, every day d at midnight, we retrieve all the historical learning records and 

discover the data-driven rule set (𝑀𝑑). We then combine the two rule sets to form an updated 

knowledge map. 

We represent topic dependencies learned from the data as fuzzy association rules. The 

conditional dependence nature of fuzzy association rules corresponds well to the topic 

dependencies that we intend to capture. Specifically, we infer topic dependencies from 

learning data if we observe conditional dependence between learners’ performances on two 
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topics (Tseng et al. 2007). For example, if we observe many concurrences of incorrectly 

answered records of topics A and B, and learners tend to perform poorly on topic B when 

they perform poorly on topic A, we can infer that topic B depends on topic A (i.e., an 

association rule A → B).  

An important decision in fuzzy association rule mining is to determine the thresholds for 

support (i.e., the concurrence of poor performance on both topics), 𝛼, and confidence (i.e., 

the proportion of poor performance on topic B given poor performance on topic A), 𝛽 (Chen 

and Wei 2002; Tseng et al. 2007). Choosing higher support and confidence thresholds (𝛼 and 

𝛽) can lead to a higher quality of the discovered rules but may result in omissions of qualified 

rules. In addition, in our context, these choices also have implications for the degree of 

conflict between the set of discovered rules 𝑀𝑑 and the set of expert rules 𝑀0, which are 

held to be true but incomplete. Combining these considerations, we choose 𝛼 and 𝛽 to 

maximize (𝛼 + 𝛽)∑ (𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑙))(𝑙∈𝑀0 ∩ 𝑙∈𝑀𝑑) . This heuristic objective function trades 

off the agreement between the discovered rules and expert rules, as measured by the sum of 

the confidence of rules at the intersection of the two sets of rules, and the quality of 

discovered rules (combining support and confidence). Once we determine the two thresholds, 

we use them in subsequent rule mining to reveal the hidden dependencies among topics and 

then dynamically update the knowledge map. Appendix B shows the knowledge map 

updating details.  

For example, in the current context, “making inferences” and “retrieving relevant 

information” are two different learning topics in English reading comprehension. Learning 

how to retrieve relevant information from an article can facilitate learners in making correct 

inferences. Hence, “making inferences” depends on “retrieving relevant information.” Figure 

2 shows the terminal state knowledge map in our context. We validate our entire approach by 
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demonstrating the terminal-state knowledge map to the senior teachers, who agreed with the 

new rules generated by fuzzy association rule mining.  

 

Figure 2. Terminal-State Knowledge Map 

Notes: A circle represents a topic. An edge represents that a topic depends on a preceding topic. For 

example, A1 → A2 captures that topic A2 depends on topic A1. 

 

Meta-Design III: Scheduling Engine for Choosing Learning Materials 

With weak topics detected and topic relatedness discovered, the next question is how to 

deliver materials that cover mixed topics to each learner. From the perspective of CLT, 

learning is more effective when the learning materials are personalized and dynamically 

adjusted to reflect learners’ progress so that their cognitive load can be optimized. This calls 

for a scheduling engine. In our learning context, learners learn through exercises. Each 

exercise consists of a set of multiple-choice assessment questions and each question covers a 

single topic (but questions in the same exercise may collectively cover a few topics). The 

goal of the scheduling engine is to choose the set of questions for each learning session to 

meet the session design objectives, including the number of topics covered, topic mastery 

level, and topic-relatedness. 

We implement both related-interleaving and two benchmark session designs (i.e., non-

interleaving and unrelated-interleaving). For the non-interleaving design, we choose 

exercises that have the highest concentration on the topic with the highest weakness ranking 

(i.e., probability of being unmastered), with concentration defined as the percentage of 
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questions covering a topic in an exercise. In most cases, the chosen exercise was 100% 

concentrated on one topic, meaning that all questions were about the same topic.  

As an illustrative example, Figure 3 depicts a knowledge map that models the 

relatedness among nine topics (A to I). In this example, the learner has five unmastered topics 

A, B, C, D, and F (yellow-shaded). The number shown next to an unmastered topic denotes 

the weakness probability; i.e., the probability that the learner has not mastered the topic. 

Suppose we have a list of unattempted exercises covering different topics as shown in the 

figure. By our design, topic A has the highest weakness probability (p=0.86) and thus will be 

the topic for the current learning session. Exercise a, which has the highest concentration of 

topic A, is therefore used for the current learning session for the non-interleaving design. 

For the unrelated-interleaving design, the scheduling engine chooses exercises that cover 

the largest number of unmastered topics and breaks ties by the aggregated weakness ranking 

of the topics covered in the exercise.4 Continuing with the example in Figure 3, the schedule 

engine will choose Exercise c, which covers three unmastered topics with the highest 

weakness ranks. 

For the related-interleaving design, we choose exercises that cover the largest number of 

unmastered topics and break ties based on a modified topic ranking that considers both 

weakness and relatedness among topics. The modified topic ranking is constructed as 

follows. Starting from topic A, which has the highest weakness ranking, we find all the topics 

that topic A depends on in the knowledge map, such as topic C. If C is an unmastered topic, 

we insert C just before A in the ranking. This is to ensure that when we select topic A, we also 

include unmastered topic C, which topic A depends on. We do this repeatedly for all 

 
4 For example, consider Exercise b, which covers three unmastered topics with weakness rankings of 1, 2, and 

4; Exercise c, which covers three unmastered topics with weakness rankings of 1, 2, and 3; and Exercise d, 

which covers two unmastered topics with weakness rankings of 1 and 2. We prefer Exercises b and c over d 

because the former two cover more unmastered topics. Between Exercises b and c, we prefer Exercise c because 

it has an aggregated weakness ranking of 6 ( = 1 + 2 + 3), which ranks higher than Exercise b with aggregated 

weakness ranking of 7 ( = 1 + 2 + 4). 
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unmastered topics to arrive at a modified ranking of topics (see Appendix C for a pseudo 

algorithm). We then calculate an aggregated ranking for each exercise by summing up the 

modified rankings of all unmastered topics covered. We select the exercise with the highest 

aggregated ranking to represent a related-interleaving design (see Appendix C for a pseudo-

scheduling algorithm). Continuing with the example in Figure 3, the schedule engine will 

generate a modified topic ranking (i.e., D, C, A, B, F), based on which the modified 

aggregated weakness will be calculated for each exercise. Then, the schedule engine will 

choose Exercise e for related-interleaving, since its modified aggregated weakness ranks 

higher than the other exercises. 

 

Figure 3. An Example of Related-Interleaving Session Design 

 

Overall System Architecture 

Figure 4 depicts how the three components combine to form a whole system. At each 

iteration, the Weak Topic Detection module learns a user’s weak topics from existing records. 

The Topic Relatedness Modeling module updates the knowledge map reflecting the new 

performance data. The Scheduling Engine module selects and ranks the weak topics and uses 

the ranked topics to choose unattempted exercises for the learner.  

A 

C D E 

B 

G I H 

F 

.86 .85 

.80 .81 .83 

Numbers are weakness probabilities 

Topic Ranking: A, B, F, D, C 

Modified Topic Ranking: D, C, A, B, F 

b 

a 

Exercise 

c 

d 

e 

Covered Topics  

A, A, A 

D, A, B 

A, B, F 

E, A, B 

C, D, A 

Non-interleaving 

Unrelated-interleaving 

Related-interleaving 



22 

 

 

Figure 4: A System Architecture for Related-interleaving 

 

Please note that after learners complete a learning session, we store new learning 

outcomes in the repository so that they can be considered when choosing materials for the 

next learning session. For example, because topic weakness rankings may change, newly 

mastered topics could be removed and the knowledge map may be adjusted as the estimations 

of dependencies change. Figure C1 in Appendix C provides an example of how topic 

weakness evolves across multiple learning sessions. 

EXPERIMENTAL EVALUATION 

After designing related-interleaving for e-learning platforms, the next step is to evaluate 

our design against the benchmarks. We start by formulating testable hypotheses for our 

experimental evaluation and then describe the study context and experiment design.  

Testable Hypotheses 

We use a field experiment to test two hypotheses derived from our design goals. Based 

on our theory-driven design discussed earlier, compared with unrelated-interleaving, related-

interleaving mitigates the “overload risk” and expands “schema-building opportunities,” 

thereby leading to improved learning. In addition, our previous discussion indicates that the 
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relative advantage of interleaving versus non-interleaving primarily hinges upon whether 

learners are overloaded in interleaved learning. We thus propose that since related-

interleaving possesses the strength of interleaving in schema building while reducing 

learners’ cognitive load, it is also likely to outperform non-interleaving. Thus, we 

hypothesize that,  

H1: Compared with unrelated-interleaving, related-interleaving leads to better learning 

performance. 

H2: Compared with non-interleaved learning, related-interleaving leads to better 

learning performance. 

While our main focus is on the advantage of the related-interleaving design, we are also 

interested in testing the heterogeneous effects of related-interleaving across learner types, 

which is useful for guiding future designs. CLT suggests that individuals differ in cognitive 

capacities and the amount of schemas they can leverage to lessen their cognitive load 

(Sweller et al. 2019). As a result, weak learners who have not built strong schemas from their 

past learning may face greater “overload risk” under interleaving than strong learners. For 

weak learners, unrelated-interleaving may leave few cognitive resources for schema building 

and prevent them from realizing the “schema-building enhancement” benefit, leading to 

suboptimal performance. Increasing topic relatedness in interleaving is thus beneficial for 

weak learners because it mitigates the “overload risk” and leaves more resources for schema 

building (Rau et al. 2010). Strong learners, however, with large cognitive capacities and more 

existing schemas to rely on, are less resource constrained and may thus not benefit as much 

from the reduced cognitive load of increasing topic relatedness. 
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Furthermore, weak learners also stand to benefit more from the increased “schema-

building opportunities” in related-interleaving. This is because weak learners are generally 

less capable of information abstraction and connection building than strong learners. 

Juxtaposing related topics in the same session thus facilitates weak learners’ information 

connection and induction to a greater extent (Lambiotte and Dansereau 1992; Nesbit and 

Adesope 2006). Hence, we expect that in the interleaving design, increasing topic relatedness 

is more beneficial for weak learners than for strong learners. 

Study Context and System Instantiation 

To evaluate the effectiveness of our proposed related-interleaving session design, we 

collaborate with a middle school in China to supplement a mandatory English course. During 

summer and winter breaks, English teachers at this school assign learners English reading 

exercises. Each exercise consists of one article and three to five multiple-choice questions for 

assessing learners’ comprehension. Traditionally, teachers distribute booklets that contain the 

same exercises for all learners. Using a third-party developer, we develop an e-learning 

system to replace the booklets. The system works as follows: The system assigns two 

exercises to each learner at the beginning of every learning session, each consisting of two 

consecutive days. Exercises that are not completed within the learning session will expire. 

After a learner submits his/her answers to each exercise online, the system provides 

immediate feedback, including displaying the correct answers, the learning topics covered, 

and explanations of why an answer is correct. We explain the system details in Appendix D. 

There are about 200 exercises in our system database. Each question in an exercise is 

designed to cover one of the 14 topics designated by the education bureau for English 

reading. These topics are related to specific skills in reading comprehension, such as “making 

inferences,” “event sorting,” “summarizing the main idea,” and “retrieving relevant 

information.” The exercises, along with the assessment questions, are designed to reinforce 
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and evaluate a learner’s mastery of these core topics. Experienced English teachers from 

leading middle schools in the region coded the topic covered by each assessment question. 

Some exercises have all questions covering the same topic, whereas other exercises have 

questions covering different topics. We leverage such natural variations and implement 

different learning session designs by choosing exercises with a desirable number of topics 

and a level of topic relatedness, as shown in the section on the scheduling engine design. 

Experiment Design and Procedure 

We conducted a field experiment during the summer break from July 13 to August 31, 

2017. We adopted a between-subject design with three conditions: non-interleaving, 

unrelated-interleaving, and related-interleaving. Our participants included 510 eighth-grade 

learners from 17 different classes in the middle school, taught by nine different English 

teachers. We did not inform learners of their assigned conditions upfront nor did we inform 

the teachers. Because the system interface was identical for the three groups, it was unlikely 

that the learners could infer their assignment group. Learners from the same class were 

randomly assigned to the three groups with equal probability so that any teacher effect would 

be canceled in cross-group comparisons. After the experiment, we debriefed the learners and 

teachers who participated in the experiment.  

 

Figure 5. Experimental Procedure 

Notes: HMM = Hidden Markov Model; KM = Knowledge Map. ○1 , ○2 , and ○3  indicate the three treatment groups. 
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The experimental procedure is depicted in Figure 5. Before the experiment, we collected 

the learners’ demographic information and their final exam scores in English, taken about one 

week before the experiment. These scores were later used to classify learners into weak and 

strong learners. Next, we randomly assigned the learners to the three groups with equal 

probability. The learners stayed in the same group throughout the experiment. We then 

conducted an online pretest that included several exercises to control for the learners’ reading 

comprehension skills before the experiment. 

The experiment included 26 learning sessions. Before each session, the HMM 

automatically recalculated each learner’s topic mastery based on up-to-date learning records. 

The system also updated the knowledge map based on pooled performance data. The system 

then selected personalized exercises for the learning session based on the learner’s treatment 

group. After the experiment, we conducted a posttest of reading comprehension to evaluate 

the learners’ performance. 

RESULTS AND ANALYSIS 

Among the 510 learners invited to use the system, 435 voluntarily participated and 

finished at least one exercise during the experiment. The three groups (non-interleaving, 

unrelated-interleaving, and related-interleaving) were roughly equal in size, with 140, 149, 

and 146 participants, respectively. Among all the participants, 381 took the posttest, and 337 

took the pretest. Our analyses focus on learners who took both the posttest and the pretest. 

We classify learners into weak and strong based on their English final-exam scores before the 

experiment. Specifically, we define those whose scores were above the class median as 

strong learners and the remaining as weak learners. We use the Posttest score (based on a 

100-point scale) as our main measure of learning performance. 

In Appendix E, we report a series of randomization and manipulation checks. The 

randomization check suggests no significant differences in terms of pre-experiment exam 
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scores, pretest scores, and gender distributions across groups. Our manipulation check 

confirms that our intervention is valid. Specifically, we find that the non-interleaving design 

covered 1.16 topics per exercise on average, whereas the two interleaving designs covered 

3.40 topics per exercise on average. In addition, the related-interleaving design had 2.29 topic 

dependencies per exercise on average, which is a significant increase from 0.47 under the 

unrelated-interleaving design. 

We report the summary statistics in Table 2. Among the participants, 46% were female. 

The learners spent 159.47 minutes in the system, on average, during the entire experiment 

period and each exercise took approximately 5.04 minutes to finish. The learners completed 

31.65 exercises out of the 54 assigned, on average, for a 61% completion rate. The average 

accuracy among the completed exercises was 65%. 

Table 2: Summary Statistics 

Variables Description N Mean SD Min Max 

Interleaving =1 if the learner was randomly assigned to 

the unrelated-interleaving or related-

interleaving group 

435 0.68 0.47 0 1 

Relatedness =1 if the learner was randomly assigned to 

the related-interleaving group 

435 0.34 0.47 0 1 

Female =1 if learner was female 435 0.46 0.50 0 1 

FinalScore English final exam score before the 

experiment 

427 81.39 13.12 23.33 98.75 

StrongLearner =1 if learner’s pre-experiment final exam 

score was above the class median 

427 0.51 0.50 0 1 

Pretest Online pretest score before the experiment 337 64.77 24.91 0 100 

Posttest Online posttest score after the experiment 381 69.22 28.29 0 100 

 

Model-free Evidence 

We first conduct a model-free analysis by comparing the posttest scores across the three 

groups (Figure 6). Overall, related-interleaving leads to an 8.28-point increase in posttest 
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scores compared with non-interleaving (p=0.021) and a 10.90-point increase compared with 

unrelated-interleaving (p<0.001). Unrelated-interleaving results in a 2.82-point decrease 

compared with non-interleaving, though the effect is insignificant (p=0.459).  

We find a similar pattern among weak learners. Related-interleaving enables them to 

gain 7.40 points relative to non-interleaving (p=0.200) and 15.88 points relative to unrelated-

interleaving (p=0.002). Unrelated-interleaving leads to an 8.47-point drop compared with 

non-interleaving, though the effect is insignificant (p=0.14). The effects among strong 

learners are different: related-interleaving leads to a significant 10.58-point increase 

compared with non-interleaving (p=0.017) and a less prominent 6.03-point increase 

compared with unrelated-interleaving (p=0.179). For stronger learners, unrelated-interleaving 

does not differ from non-interleaving (β=4.55, p=0.291).  

 

Figure 6: Model-free Evidence 

 

Effect of Related-interleaving on Posttest Scores 

To test the effect of related-interleaving on learning performance, we model the learning 

performance of a learner 𝑖 as follows: 

𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡𝑖 = 𝛼 + 𝛽1𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑖 + 𝛽2𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑖 × 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑖 + 𝒙𝒊 + 𝝎𝒊 + 𝜖𝑖 
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where 𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡𝑖 represents the posttest performance of learner 𝑖 and vector 𝒙𝒊 denotes 

learner characteristics including the pre-experiment final exam score (FinalScore), the pretest 

score (Pretest), and gender (Female). Vector 𝝎𝒊 is a class-fixed effect. 𝜖𝑖 denotes the 

idiosyncratic variation in learning performance.  

Table 3: Effect of Interleaving and Topic Relatedness  

 Posttest Posttest 

 (1) (2) 

Interleaving -2.97 

(3.33) 

-19.86*** 

(5.38) 

Interleaving×Relatedness 10.05** 

(3.21) 

18.81*** 

(4.48) 

Interleaving×StrongLearner  

 

25.18*** 

(6.98) 

Interleaving×Relatedness×StrongLearner  

 

-15.86* 

(6.56) 

StrongLearner  

 

-7.13 

(5.35) 

FinalScore 0.83*** 

(0.16) 

 

 

Pretest 0.30*** 

(0.06) 

0.36*** 

(0.06) 

Female 6.10* 

(2.78) 

6.84* 

(2.82) 

Constant -18.81 

(16.22) 

58.46*** 

(7.48) 

Class fixed effect YES YES 

N 306 306 

R2 0.359 0.343 

Notes: Interleaving represents the effect of unrelated-interleaving relative to non-interleaving. Relatedness is 

meaningful only in the interleaving condition (i.e., coded as 0 for both unrelated-interleaving and non-

interleaving conditions). Therefore, Interleaving×Relatedness is equivalent to Relatedness and captures the 

effect of related-interleaving relative to unrelated-interleaving. * p < 0.05, ** p < 0.01, *** p < 0.001. Standard 

errors are in parentheses. 

 

Based on the regression results (see Table 3, column 1), Relatedness significantly 

moderates the effect of Interleaving. To aid understanding, we compare related-interleaving 

with two other conditions in Figure 7. Compared with unrelated-interleaving, learners in the 

related-interleaving group score 10.05 points higher (p = 0.002). Compared with non-
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interleaving, related-interleaving leads to a 7.08-point increase (p = 0.038)5. We thus find 

support for hypotheses H1 and H2. Overall, we find that related-interleaving significantly 

increased learning performance. 

 

Figure 7. Posttest Comparison among Three Experimental Conditions 
Notes: The dots represent mean values. The error bars represent the 95% confidence intervals. 

 

We also compare the posttest performance between non-interleaving and unrelated-

interleaving and find no significant difference (𝛽 = -2.97, p = 0.374). This indicates that the 

traditional unrelated-interleaving design does not yield better learning performance than the 

non-interleaving design. 

To further examine whether related-interleaving increases the amount of schema 

building as predicted by CLT, we also compare the three groups based on two indirect 

measures of schema-building loads as suggested by prior literature; namely, a learner’s topic 

mastery and practice accuracy after each learning session (Brunken et al. 2003; Orru and 

Longo 2019). As shown in Appendix F, related-interleaving leads to increased topic mastery 

and practice accuracy in each learning session than unrelated-interleaving and non-

interleaving, supporting our theoretical predictions.  

 
5 This is calculated as a combined effect of Interleaving and Interleaving×Relatedness in Table 3.  
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Effect of Related-interleaving by Learner Type 

We further explore the heterogeneous effects of related-interleaving across different 

learners. To understand how the benefit of related-interleaving differs by learner type, we add 

a three-way interaction term between interleaved learning (Interleaving), topic relatedness 

(Relatedness), and learner type (StrongLearner).6  

𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡𝑖 = 𝛼 + 𝛽1𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑖 + 𝛽2𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑖 × 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑖

+ 𝛽3𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑖 × 𝑆𝑡𝑟𝑜𝑛𝑔𝐿𝑒𝑎𝑟𝑛𝑒𝑟𝑖

+ 𝛽4𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑖 × 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑖 × 𝑆𝑡𝑟𝑜𝑛𝑔𝐿𝑒𝑎𝑟𝑛𝑒𝑟𝑖 + 𝒙𝒊 + 𝝎𝒊 + 𝜖𝑖. 

The results from Table 3 Column 2 show a significantly negative three-way interaction, 

which confirms that increasing topic relatedness benefited weak learners more than strong 

learners. To aid understanding, we first plot the findings in Figure 8, which shows that weak 

learners (solid line) achieve significantly better performance (an 18.81-point increase) with 

related-interleaving than unrelated-interleaving. In contrast, the improvement brought by 

related-interleaving for strong learners (dashed line) is not significant (𝛽 = 2.94, p = 0.538). 

Increasing topic relatedness also significantly reduces the performance gap between strong 

and weak learners from 18.04 points (with unrelated-interleaving) to 2.18 points (with 

related-interleaving). Appendix G shows that our heterogeneous analyses are not sensitive to 

the division between strong and weak learners. 

Another notable finding is that a significant positive interaction exists between 

interleaved learning (Interleaving) and learner type (StrongLearner) (Table 3, column 2). 

This indicates that traditional unrelated-interleaving (relative to non-interleaving) benefits 

strong learners (a 5.31-point increase in posttest scores), but hurts weak learners (a 19.86-

point drop). This is consistent with the CLT framework that suggests that interleaving may 

significantly increase cognitive overload risks among weak learners (who have not built 

 
6 Interleaving×Relatedness×StrongLearner is equivalent to Relatedness×StrongLearner because Relatedness is coded as 0 

for both unrelated-interleaving and non-interleaving conditions. 
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strong schemas previously), dampening their learning performance. For strong learners, 

interleaving is less likely to lead to cognitive overload because they have more existing 

schemas to rely on. Overall, these findings support the CLT perspective that when learners’ 

cognitive resources are strained (as in the case of weak learners), unrelated-interleaving can 

hurt learning performance, highlighting the importance of topic relatedness. 

 

Figure 8. Heterogeneous Effect of Topic Relatedness on Posttest Score 
Notes: Dots represent the mean values. Error bars represent the 95% confidence intervals. 

 

DISCUSSION 

Contributions to the Literature 

This study contributes to the literature in four ways. First, following the design science 

paradigm, we contribute to the e-learning literature by developing and testing a theory-

grounded interleaving design — related-interleaving. Our related-interleaving design 

incorporates (a) the dynamic detection of learners’ weak topics at each moment using a 

hidden Markov chain, (b) a knowledge-map-based representation for capturing topic 

dependencies and a fuzzy association rule algorithm for data-driven augmentation of the 

knowledge map, and (c) a scheduling engine that assembles a set of exercises that meet the 

requirements of related-interleaving, personalization, and adaptation. Based on a field 
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experiment, we showcase how one can harness the power of machine learning in data-rich e-

learning environments to make learning session design more adaptive and effective.  

Second, more broadly, we extend the stream of IS research on structuring e-learning 

activities (Alavi and Leidner 2001; Gupta and Bostrom 2013; Gupta and Bostrom 2009; 

Piccoli et al. 2001) by examining topic design in a learning session. Prior studies have mainly 

focused on weak topic detection and how to optimize the design across multiple learning 

sessions. We have gone further to show the importance of choosing multiple weak topics to 

practice in one learning session. We believe that this new design, related-interleaving, can 

generate meaningful implications in other e-learning design elements such as multimedia 

design and instructional strategies.  

Third, our work contributes to the literature on interleaving. Existing literature has shown 

mixed evidence in terms of the interleaving effect, but there is very limited theorization about 

the potential downsides of interleaving. Additionally, there is also limited attention on how to 

design interleaving effectively. This study uses CLT as a theoretical framework to explain the 

benefits and risks of interleaving and to motivate a new related-interleaving design that 

mitigates the risk of cognitive overload while maintaining schema-building opportunities. 

Our findings confirm two novel predictions of the theory: the benefit of related-interleaving 

and the differential effects of interleaving across learner types. The contingency factors 

identified in this study — topic relatedness and learner type (i.e., strong and weak learners) 

— may help explain the mixed findings about interleaving in the literature. Moreover, our 

CLT-based framework may serve as a theoretical foundation for new interleaving research 

and designs. For instance, researchers can use it to investigate the optimal spacing of 

interleaved topics and the role of complexity level of exercises in interleaved designs. 

Lastly, this study contributes to the existing CLT literature by adding that topic design in 

a learning session also holds important implications for cognitive load and learning 
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performance. Prior research has used CLT to guide various aspects of instructional design, 

such as information presentation formats, the use of worked examples, and the modality of 

instructions. This research shows that CLT can also guide interleaving designs, both in terms 

of the number of topics in a learning session and the relationship between these topics. 

Building on tenets of CLT, our research suggests a nuanced relationship between interleaving 

and learning performance: increasing the number of topics in a session (i.e., interleaving) can 

elevate cognitive load and potentially hinder learning, particularly among weak learners; 

however, when the topics included in the same session are more related, the risk of overload 

is reduced, allowing learners, especially weak learners, to benefit more from schema-building 

opportunities brought by interleaving and thus obtain better learning performance. Overall, 

our work extends the domain of CLT by revealing a complex relationship between 

interleaving designs, individual differences, cognitive load, and learning performance. 

Implications for Practice 

Our findings have several actionable implications for practice. First, we highlight an 

overlooked issue in e-learning session design and offer a few alternatives — non-

interleaving, unrelated-interleaving, and related-interleaving session designs. As more e-

learning platforms begin to offer personalized learning materials for learners, the issue will 

become increasingly relevant. Second, our findings suggest that e-learning platforms should 

not blindly mix topics in an interleaved learning session; ensuring topic relatedness is a great 

way of enhancing the benefits of interleaved learning while mitigating overload risks. Third, 

our findings suggest that e-learning platforms should consider learners’ capacities when 

designing learning sessions. Interleaving generally benefits strong learners and our proposed 

related-interleaving is likely the best design for them. For weak learners, both related-

interleaving and traditional non-interleaving designs are suitable, but unrelated-interleaving 

design (i.e., interleaving without enforcing topic relatedness) should be avoided. Finally, we 

provide several tools, such as a hidden Markov chain and a knowledge map, that can be 
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directly appropriated by practitioners to support personalized, adaptive, and data-driven 

designs, such as related-interleaving. We hope that our work can inspire more e-learning 

practitioners to incorporate data-driven decisions and machine intelligence into their learning 

designs.  

Limitations and Future Research 

Our study has several limitations that can be addressed in future research. First, our 

findings are based on a field experiment on a specific subject (English) and population. The 

research can benefit from replications to other subject domains and learner populations. 

Second, our field experiment lasted only two months and thus may not capture long-term 

effects. Third, we used certain heuristics in our implementation of related-interleaving that 

could be further optimized. Future research could experiment with a different number of 

interleaved topics and different ways of choosing among weak topics. For example, for 

strong learners, given that handling three related topics with the highest weakness rankings 

works well in our study, future studies could consider increasing the number of related topics 

to fully tap the potential of strong learners. However, for weak learners, our findings show 

that, although mixing three related topics may mitigate the downside of unrelated-

interleaving, it is no better than non-interleaving. Hence, mixing fewer related topics or 

choosing topics with a lower weakness ranking may further lessen cognitive load and 

potentially benefit weak learners more. Existing CLT-based design principles could also be 

utilized to reduce cognitive load for weaker learners. Strategies like offering worked 

examples, partial solutions, and integrating multi-modal information could be leveraged to 

further assist weak learners in getting the full benefits of related-interleaving. In addition, 

future research could further explore different implementations of topic relatedness (e.g., 

ones focusing on topic similarity) and how optimal implementations may depend on specific 

contexts (e.g., different subject domains and learning conditions). Fourth, given our findings 

on how the effects of different interleaving designs differ across weak and strong learners, 
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future research could explore how the design of interleaving should be adapted dynamically 

as learners gain proficiency. Finally, although our findings support CLT predictions, we 

could not directly test the theory in our field experiment. Further tests of theoretical 

mechanisms may be a good subject for future research.  
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APPENDIX A: ESTIMATION OF THE HIDDEN MARKOV MODEL 

Covariate Specification 

According to Figure 1 in the main text, the transition covariates (𝑾𝒔𝒕
𝒄 ) include time-

invariant learner characteristics and time-variant learning history. The former includes 

gender, age, and pre-experiment exam scores and the latter includes the number of correctly 

answered questions on the focal topic, the number of incorrectly answered questions on the 

focal topic, and the total number of questions answered for all topics. 

The emission covariates (𝒁𝒔𝒕
𝒄 ) also include the same time-invariant learner 

characteristics and time-variant learning-history variables. The emission process can also be 
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affected by time-variant learner’s behavioral tendencies. The latter includes the average 

duration spent on each question of a given topic and the standard deviation of durations spent 

on questions of this topic. 

Maximizing the Likelihood of the Observed Learning Records Over Time 

We estimate a learner’s mastery level of different topics by maximizing the likelihood of 

the observed learning outcomes over time. The model specification and estimation are as 

follows.  

For each specific topic c, we use 𝑋𝑠𝑡  
𝑐 to represent the outcome of the t-th assessment (i.e., 

whether the t-th question on topic c is correctly answered) for learner s. We define 𝑿𝒔
𝒄(𝑻)

 = 

(𝑋𝑠1,
𝑐  𝑋𝑠2

𝑐 , … , 𝑋𝑠𝑇
𝑐 ), representing a learner s’s learning outcomes on topic c from assessment 1 

to assessment T. We define 𝒀𝒔
𝒄(𝑻)

= (𝑌𝑠1,
𝑐  𝑌𝑠2

𝑐 , … , 𝑌𝑠𝑇
𝑐 ) as a learner s’s hidden mastery level 

history on topic c from assessment 1 to assessment T. The transition covariate matrix (𝑾𝒔
𝒄(𝑻)

) 

and emission covariate matrix (𝒁𝒔
𝒄(𝑻)

) are similarly defined. The likelihood of observing the 

learning outcome 𝑿𝒔
𝒄(𝑻)

 for learner s on topic c from assessment 1 to assessment T is 𝐿𝑠
𝑐(𝑇)

=

𝑃(𝑿𝒔
𝒄(𝑻)

) = ∑ 𝑃(𝑿𝒔
𝒄(𝑻)

, 𝒀𝒔
𝒄(𝑻)

)
𝒀𝒔

𝒄(𝑻) . Following the Markov assumption, we can derive the 

likelihood as follows: 

𝐿𝑠
𝑐(𝑇)

= ∑ 𝑃(𝑿𝒔
𝒄(𝑻)

|𝒀𝒔
𝒄(𝑻)

, 𝒁𝒔
𝒄(𝑻)

) 𝑃(𝒀𝒔
𝒄(𝑻)

| 𝒀𝒔
𝒄(𝑻−𝟏)

,𝑾𝒔
𝒄(𝑻−𝟏)

)

𝒀𝒔
𝒄(𝑻)

 

According to the dependencies in the Markov chain, we can decompose the 𝐿𝑠
𝑐(𝑇)

 as the 

sum over all the paths. 

𝐿𝑠
𝑐(𝑇)

= ∑ 𝑃(𝑌𝑠1
𝑐 ,𝑊𝑠1

𝑐 ) ∏𝑃(𝑋𝑠𝑡
𝑐 |𝑌𝑠𝑡

𝑐 , 𝑍𝑠𝑡
𝑐 ) 𝑃(𝑌𝑠𝑡

𝑐 | 𝑌𝑠𝑡−1
𝑐 ,𝑊𝑠𝑡−1

𝑐 )

𝑇

𝑡=2𝑌𝑠1,
𝑐  𝑌𝑠2

𝑐  ,…,𝑌𝑠𝑇
𝑐

 



43 

 

where 𝑃(𝑌𝑠𝑡
𝑐 | 𝑌𝑠𝑡−1

𝑐 ,𝑊𝑠𝑡−1
𝑐 ) is the transition probability from the hidden state 𝑌𝑠𝑡−1

𝑐  at 

assessment t-1 to the hidden state 𝑌𝑠𝑡
𝑐  at assessment t, which is affected by the transition 

covariates (𝑊𝑠𝑡−1
𝑐 ), and 𝑃(𝑋𝑠𝑡

𝑐 |𝑌𝑠𝑡
𝑐 , 𝑍𝑠𝑡

𝑐 ) is the emission probability of hidden state 𝑌𝑠𝑡
𝑐  at 

assessment t, which is affected by the emission covariates (𝑍𝑠𝑡
𝑐 ). The joint likelihood of 

observing the learning outcomes for all learners and all topics from assessment 1 to 

assessment T is given by 𝐿(𝑇) = ∏ ∏ 𝐿𝑠
𝑐(𝑇)

𝑐𝑆 . We maximize the likelihood 𝐿(𝑇) by choosing 

the value of each parameter. 

 During the experiment, we use the first two-week’s learning records to train the model 

(~20,000 question-answer records) and apply the trained model to the remaining weeks. 

Following Singh et al. (2011) and Kim and Krishnan (2019), we choose the number of hidden 

states using the Bayesian information criterion, which indicates that the optimal number of 

hidden states is two, labeled as “unmastered” and “mastered”, respectively. 

APPENDIX B: KNOWLEDGE MAP UPDATING 

We use the fuzzy association rules to discover topic dependencies and refine the 

knowledge map. The detailed knowledge map updating process is as follows. An assessment 

question answered by a learner is treated as one question record. Given that each question is 

mapped to one topic, we can transform a question record into a topic record. For a given 

topic, we pool the records for an individual learner and get a record set. For each record set, 

we calculate the proportion of incorrect answers as the error rate for this topic. For example, 

learner s answered three questions related to topic A and two were incorrectly answered. 

Thus, the error rate of topic A for learner s is ErrorRates(𝐴) = 2/3. With n learners, we can 

calculate the support of A as the mean error rate of A:  

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) =
1

𝑛
∑ 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠(𝐴)𝑛

𝑠=1 . 
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Therefore, a higher support is interpreted as a higher error rate.  

Extending the notion of support to a set of topics, we cannot use the Boolean logic 

operator because the error rates are numerical. Following Tseng et al. (2007), we calculate 

the support of a topic set using the fuzzy implication operator (FIO) minimization. Formally,  

Support(𝐴, 𝐵) =
1

𝑛
∑ min (𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠(A), 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠(B))

𝑛

𝑠=1
 

A high value of Support(𝐴, 𝐵) implies that learners frequently answer both topic-A and topic-

B questions incorrectly. 

Following the rule of Bayesian posterior, we can derive the confidence level of 

association (A → B) as follows: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(A → B) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴, 𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(A)
 

A high value of confidence (A → B) implies that a large portion of learners who incorrectly 

answered questions on topic A also incorrectly answered questions on topic B. With high 

support and confidence, we can consider A to be a dependency for B. To ensure that A plays 

a significant role in B’s accuracy, we follow the literature to only keep the rules whose lift, 

measured as 
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 → 𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐵)
, is larger than 1.  

APPENDIX C: PSEUDO ALGORITHM OF THE SCHEDULING ENGINE 

Pseudo Algorithm for Refining Topic List 

# This function modifies the weak topic list for a specific learner according to the knowledge map so 

that related weak topics are placed next to each other 

Function GetRefinedTopicList (WeakTopicList, KM) → RefinedTopicList { 

   # Inputs:    

  # WeakTopicList: Store the focal learner’s weak topics detected by HMM 

  # KM: Stored the knowledge map updated by the fuzzy association rule 

   # Returns:  

  # RefinedTopicList: an ordered list of refined weak topics for the learner. 

RefinedTopicList = [] ; 

Sort WeakTopicList by the descending order of the probability of being unmastered; 

for (i=0; i< WeakTopicList.length(); i++) { 
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    WeakTopic= WeakTopicList[i] ; 

    if (WeakTopic not in RefinedTopicList ) { 

        Append WeakTopic at the end of RefinedTopicList; 

    } 

    TopicDependencyList = look up all the topics that the WeakTopic depends on in KM; 

    foreach TopicDependency in TopicDependencyList { 

        if (TopicDependency in WeakTopicList) { 

            insert TopicDependency into RefinedTopicList just before WeakTopic; 

        } 

    } 

} 

Return RefinedTopicList; 

} 

 

 

Pseudo Algorithm for Schedule Exercises 

# This function schedules the exercises for the next learning session 

Function ScheduleExercises () → RankedExerciseList{ 

# RankedExerciseList: a list of exercises for the focal learner in the next learning session 

RefinedTopicList = GetRefinedTopicList (WeakTopicList, KM) ; 

ExerciseList= look up all the exercises in the database that have not been assigned to the focal 

learner; 

foreach Exercise in ExerciseList { 

    Exercise.TopicRankSum = 0 ;  

    ExerciseWeakTopics = look up all the topics in the RefinedTopicList covered by the Exercise; 

    foreach ExerciseWeakTopic in ExerciseWeakTopics { 

        TopicRank = The position of ExerciseWeakTopic in the RefinedTopicList ; 

        Exercise.TopicRankSum = Exercise.TopicRankSum + TopicRank ; 

    } 

    Exercise.NumberWeakTopics = ExerciseWeakTopics.length() ; 

} 

RankedExerciseList = sort ExerciseList by the descending order of NumberWeakTopics and the 

ascending order of TopicRankSum;  

Return the top N Exercises in the RankedExerciseList ; 

} 
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An Example of Related-interleaving Across Sessions 

 

Figure C1: An Example of Related-interleaving Across Sessions 

Notes: As an illustrative example, the knowledge map models the relatedness among 9 topics (A to I). We use 

shaded circles to indicate a learner’s unmastered topics and white circles to indicate the mastered topics at the 

moment. The number beside an unmastered topic, as derived by the HMM, is the probability that the learner has 

not mastered it. Based on the modified ranking of weak topics in Session #N (D, C, A, B, F), we assign the learner 

exercises that cover three unmastered topics that are directly connected in the knowledge map (C, D, A). In Session 

#N+1, the system detects that the learner has mastered the practiced topics but becomes unfamiliar with E and H 

as time goes by. Consequently, the personalized list of weak topics becomes B, E, F, and H. According to the 

updated weak topics in modified topic ranking, we assign the learner exercises that cover three unmastered topics 

that are directly connected in the knowledge map (H, E, B) for Session #N+1.  

APPENDIX D: SYSTEM DESCRIPTION 

When a learner logs in the system, he/she can click the “personalized exercise” module 

and find all the personalized exercises assigned to him/her, including both the finished and 

unfinished ones, and the associated assignment dates and due dates, as shown in Figure D1. 

 

Figure D1. Demo of a Learner-Specific List of Exercises 

Student name Class ID Status Avaliable from Due by Submit time

Select *****, Chen Grade 8, Class 3 Unfinished 2017-08-28 2017-08-29

Select *****, Chen Grade 8, Class 3 Unfinished 2017-08-28 2017-08-29

Select *****, Chen Grade 8, Class 3 Finished 2017-08-26 2017-08-27 2017-08-27 20:17:17

Select *****, Chen Grade 8, Class 3 Finished 2017-08-26 2017-08-27 2017-08-26 09:14:25

Select *****, Chen Grade 8, Class 3 Unfinished 2017-08-24 2017-08-25

Select *****, Chen Grade 8, Class 3 Finished 2017-08-24 2017-08-25 2017-08-24 21:41:17

Select *****, Chen Grade 8, Class 3 Finished 2017-08-22 2017-08-23 2017-08-23 16:40:12

Select *****, Chen Grade 8, Class 3 Finished 2017-08-22 2017-08-23 2017-08-22 16:28:06

Select

Select

Select

Select

Select

Select

Select

Select

A 

C D E 

B 

G I H 

F 

.86 .85 

.80 .81 .83 

A 

C D E 

B 

G I H 

F 

.85 

.80 

.81 .83 

Topic Ranking: A, B, F, D, C 

Modified Topic Ranking: D, C, A, B, F 

Topic Ranking: B, F, E, H 

Modified Topic Ranking: H, E, B, F 

Session #N Session #N+1 
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When a learner clicks one exercise, the system displays an article and the corresponding 

assessment questions. After the learner submits the answers, the system automatically grades 

the answers and provides real-time feedback, including the correct answers and the reasoning 

processes, as illustrated in Figure D2. The learner can find all the learning records, along with 

the feedback, in the “learning records” section. 

 

Figure D2. Snapshot of the Answer Page 
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APPENDIX E: RANDOMIZATION AND MANIPULATION CHECK 

To ensure that the subjects were randomly assigned without significant differences in 

their prior performance across the three experimental groups (i.e., non-interleaving, 

unrelated-interleaving, and related-interleaving), we compare the pre-experiment exam scores 

(FinalScore) across the three groups.  

 

Figure E1. Randomization Check: Pre-experiment Exam Score Comparison 

 

The results show no significant difference (Figure E1, all learners). Furthermore, the 

average scores of weak and strong learners in the three groups are not significantly different 

(see Figure E1, Weak Learners and Strong Learners). In addition, the numbers of weak and 

strong learners are also equally distributed across the three groups.  

 

Figure E2. Randomization Check: Pretest Score Comparison 
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We also compare the pretest scores (Pretest) across the three groups. The results show 

no significant difference (Figure E2, all learners). Furthermore, the average scores of weak 

and strong learners in the three groups are not significantly different (see Figure E2, Weak 

Learners and Strong Learners). Then we compare the gender (Female) distribution across the 

three groups and find no significant difference (see Figure E3). 

 

Figure E3. Randomization Check: Learner Gender 

 

Finally, we conduct the randomization checks in each of the 17 different classes. Table 

E1 reports the p-value of the pairwise comparison across the three groups by using the 

subsamples of each class. Table E1 also reports the p-value of ANOVA analysis for the 

differences between three groups in each of the 17 classes. Panel A, Panel B, and Panel C 

compare the pre-experiment final score, pretest score, and gender, respectively. In general, 16 

out of 17 classes show no significant difference across the three groups in terms of the pre-

experiment final score, pretest score, and gender. One exception is Class 15. Class 15 shows 

no significant difference in terms of the pre-experiment final score and gender, but a marginal 

significance in terms of the pretest score across the three groups. To resolve this issue, we 

conduct robustness checks by removing all the students in Class 15 and find consistent 

results. Thus, we deem randomization successful. 
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Table E1: The p-value of the pairwise comparison across three experimental groups in each of the 17 classes 

ClassID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Panel A: Pre-experiment final score 

Unrelated-Interleaving - Non-Interleaving 0.96 0.55 0.66 0.84 0.77 0.92 0.81 0.26 0.42 0.95 0.66 0.89 0.95 0.72 0.70 0.91 0.75 

Related-Interleaving - Unrelated-Interleaving 0.63 0.81 0.58 0.28 0.50 0.90 0.61 0.42 0.75 0.13 0.79 0.65 0.51 0.98 0.44 0.90 0.91 

Related-Interleaving - Non-Interleaving 0.63 0.69 0.88 0.21 0.77 0.83 0.75 0.71 0.57 0.16 0.50 0.75 0.52 0.72 0.69 0.83 0.84 

Three Group Comparison 0.85  0.83 0.85 0.40 0.79 0.98 0.87 0.50 0.70 0.27 0.78 0.89 0.75 0.92 0.74 0.98 0.95 

Panel B: Pretest Score 

Unrelated-Interleaving - Non-Interleaving 0.86 0.49 0.56 0.52 0.63 0.55 0.70 0.50 0.70 0.67 0.51 0.74 0.68 0.59 0.85 0.85 0.88 

Related-Interleaving - Unrelated-Interleaving 0.30 0.75 0.72 0.56 0.23 0.50 0.73 0.16 0.35 0.36 0.24 0.74 0.41 0.26 0.05 0.61 0.76 

Related-Interleaving - Non-Interleaving 0.14 0.28 0.39 1.00 0.31 0.87 0.94 0.47 0.67 0.22 0.50 0.53 0.62 0.50 0.09 0.72 0.86 

Three Group Comparison 0.30  0.54 0.68 0.77 0.40 0.74 0.91 0.36 0.64 0.46 0.48 0.81 0.71 0.52 0.11 0.87 0.95 

Panel C: Gender Distribution 

Unrelated-Interleaving - Non-Interleaving 1.00 1.00 0.87 0.42 0.78 0.25 0.92 0.36 0.60 1.00 0.43 0.29 0.33 0.85 1.00 1.00 0.88 

Related-Interleaving - Unrelated-Interleaving 0.70 0.85 0.85 0.42 0.70 1.00 0.95 0.20 1.00 1.00 0.62 0.79 0.69 0.85 0.55 1.00 0.28 

Related-Interleaving - Non-Interleaving 0.73 0.85 0.70 0.97 0.54 0.25 0.97 0.68 0.57 1.00 0.75 0.48 0.56 1.00 0.52 1.00 0.31 

Three Group Comparison 0.91 0.98 0.93 0.64 0.82 0.41 0.99 0.42 0.82 1.00 0.72 0.55 0.62 0.97 0.76 1.00 0.48 
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To check the manipulation in terms of whether the topics were successfully interleaved, 

we retrieve learners’ exercise records during the experiment. Each learner in the non-

interleaved group completed 34.3 exercises and each exercise covered 1.16 topics on average, 

indicating that the learners were supplied with exercises covering only one unmastered topic 

most of the time. Each learner in the unrelated-interleaving group completed 34.9 exercises, 

with each exercise covering 3.42 topics on average. Each learner in the related-interleaved 

group completed 35.6 exercises, with each exercise covering 3.38 topics on average. As 

depicted in Figure E4, the learners in the unrelated-interleaving and related-interleaving 

groups received exercises covering significantly more topics than those in the non-

interleaving group (p < 0.001). This pattern holds for both strong learners and weak learners. 

Hence, the manipulation of interleaving is considered successful. 

 

Figure E4. Manipulation Check: Average Number of Topics Covered per Exercise 

 

We also check the manipulation of topic relatedness by comparing the number of topic 

dependencies covered by each exercise between the unrelated-interleaving group and the 

related-interleaving group. Learners in the unrelated-interleaving group received exercises 

covering 0.47 topic dependencies on average, whereas learners in the related-interleaved 

group received exercises covering 2.29 topic dependencies on average. As depicted in Figure 

E5, the learners in the related-interleaving group received exercises with significantly more 

topic relationships (p < 0.001). This pattern also holds for both strong learners and weak 

learners. Hence, the manipulation of topic relatedness is considered successful. 
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Figure E5. Manipulation Check: Average Number of Topic Dependencies in Each 

Exercise 

APPENDIX F: EXPLORING THE EFFECTS OF RELATED-INTERLEAVING ON 

COGNITIVE LOAD 

To provide further evidence of whether our findings can be explained by cognitive load 

theory, we explore whether related-interleaving induces more cognitive load on schema 

building during learning sessions than unrelated-interleaving and non-interleaving. Although 

we do not directly observe learners’ schema-building load, the literature suggests a few 

indirect indicators of schema-building load, as detailed below.  

First, CLT suggests that when learners engage more cognitive resources in schema 

building, they achieve a higher level of knowledge acquisition (Ausubel et al. 1968). 

Accordingly, knowledge acquisition scores are the “most common method of investigating 

cognitive load” (Brunken et al. 2003; Orru and Longo 2019). In our study, because we use 

the HMM to estimate the learner’s topic mastery after each learning session, we can leverage 

HMM estimates of topic mastery as a measure of knowledge acquisition scores. Second, 

similar to knowledge acquisition scores, researchers have also used learners’ accuracy of 

doing exercises during a learning session as an indirect measure of their schema-building 

load (Martin 2014; Orru and Longo 2019). We, therefore, obtain learners’ accuracy in 

answering questions in each learning session.  
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Table F1: Effect of Related-interleaving on Topic Mastery and Session Accuracy 

 Topic Mastery Session Accuracy 

 (1) (2) 

Interleaving -0.004 

(0.00) 

0.006 

(0.01) 

Interleaving×Relatedness 0.043*** 

(0.00) 

0.026*** 

(0.01) 

FinalScore 0.005*** 

(0.00) 

0.006*** 

(0.00) 

Pretest 0.005*** 

(0.00) 

0.002*** 

(0.00) 

Female 0.050*** 

(0.00) 

0.067*** 

(0.01) 

Constant -1.176*** 

(0.05) 

-0.044 

(0.10) 

Class fixed effect YES YES 

Date fixed effect YES YES 

Topic fixed effect YES NO 

N 79772 11269 

R2 0.229 0.196 

Notes: Interleaving represents the effect of unrelated-interleaving relative to non-interleaving. Relatedness is 

meaningful in the interleaving condition, but not in the non-interleaving condition. Therefore, 

Interleaving×Relatedness is equivalent to Relatedness and captures the effect of related-interleaving relative 

to unrelated-interleaving. * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors are in parentheses. 

 

We first compare learners’ mastery of each topic in each learning session across three 

experimental groups (see Table F1, column 1), controlling for the pre-experiment final exam 

score (FinalScore), the pretest score (Pretest), and gender (Female). We also include the 

class-fixed effect to incorporate class-level heterogeneity, the date-fixed effect to control for 

time heterogeneity, and the topic-fixed effect to incorporate topic-level heterogeneity. Then, 

we compare learners’ accuracy during the learning session across three experimental groups 

(see Table F1, Column 2).  

Figure F1 Column 1 shows that learners under the related-interleaving condition have 

3.8% and 4.3% higher probabilities of mastering the topics learned in the session, compared 

with learners under the non-interleaving and unrelated-interleaving conditions, respectively. 

Column 2 shows that learners under the related-interleaving condition had 3.1% and 2.6% 
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increases in session accuracy compared with learners under the non-interleaving and 

unrelated-interleaving conditions, respectively. Overall, evidence based on the two indirect 

measures indicates that related-interleaving leads to increased schema-building load during 

learning sessions, which is consistent with the CLT predictions. 

 

Figure F1. Test the Schema Building by Topic Mastery and Session Accuracy 
Notes: A dot represents the mean value, and the error bar represents the 95% confidence interval. 

APPENDIX G: SENSITIVITY ANALYSIS 

In the above analyses, we categorize the learners into strong or weak based on a median 

split of their pre-experiment exam scores. We conduct a sensitivity analysis by varying the 

definition of strong learners from the top 40% to the top 60% in the class based on their final 

exam scores. We repeat the analyses and report the results in Table G1. Our results show that 

the three-way interaction (Interleaving×Relatedness×StrongLearner) is consistently negative. 

Thus, our findings are not sensitive to the selection of the cutting point for the division. 

Furthermore, the effect of relatedness for weak learners (Interleaving×Relatedness) increases 

from 14.56 to 24.32 when strong learners are defined from the top 40% to the top 60% of the 

class. In other words, the positive effect of topic relatedness is more pronounced for learners 

in the remaining 40% of the class. For these learners, increasing topic relatedness is more 

beneficial because it helps reduce the basic processing load caused by interleaved learning. 
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Table G1: Sensitivity Analyses of the Heterogeneous Effect for Different Types of Learners 

 40% 45% 50% 55% 60% 

 (1) (2) (3) (4) (5) 

Interleaving -15.92*** 

(4.59) 

-16.02** 

(4.98) 

-19.86*** 

(5.38) 

-21.31*** 

(5.88) 

-28.17*** 

(6.19) 

Interleaving×Relatedness 14.56*** 

(4.01) 

17.42*** 

(4.28) 

18.81*** 

(4.48) 

21.40*** 

(4.63) 

24.32*** 

(4.87) 

Interleaving×StrongLearner 25.25*** 

(6.98) 

21.57** 

(6.96) 

25.18*** 

(6.98) 

26.60*** 

(7.24) 

34.59*** 

(7.41) 

Interleaving×Relatedness×StrongLearner -11.59+ 

(6.94) 

-15.50* 

(6.74) 

-15.86* 

(6.56) 

-19.22** 

(6.45) 

-22.58*** 

(6.42) 

StrongLearner -6.87 

(5.04) 

-4.42 

(5.16) 

-7.13 

(5.35) 

-4.16 

(5.72) 

-8.71 

(5.88) 

Pretest 0.35*** 

(0.06) 

0.35*** 

(0.06) 

0.36*** 

(0.06) 

0.36*** 

(0.06) 

0.38*** 

(0.06) 

Female 7.01* 

(2.81) 

6.83* 

(2.84) 

6.84* 

(2.82) 

6.81* 

(2.76) 

6.76* 

(2.71) 

Constant 58.55*** 

(7.28) 

56.23*** 

(7.36) 

58.46*** 

(7.48) 

56.28*** 

(7.57) 

58.32*** 

(7.63) 

Class fixed effect YES YES YES YES YES 

N 306 306 306 306 306 

R2 0.343 0.335 0.343 0.362 0.384 

Notes: + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors are in parentheses. 
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